Comparative Analysis of Molecular Structure, Vibrational Spectral Studies and Nlo Properties of 3-Hydroxy-4methoxy-Benzaldehyde and 4-Hydroxy-3-Methoxy-Benzaldehyde by DFT

B. S. Yadavª, Vibha Sharma^b, Sachin Kumar^c

^aPrincipal D.N.(P.G.) College, Meerut, Uttar Pradesh, India

^bHead, Department of basic science, Pacific college of Engineering,Udaipur, Rajasthan, India

^cAssociate Prof. And Head Department of Physics A.S.(P.G.) College, Mawana, Meerut, Uttar Pradesh, India

Corresponding author (c) : sachin_sks1@yahoo.com

ABSTRACT

Benzaldehyde is best known as being artificial essential oil of almond and it has many other uses such as; the manufacturing of dyes, perfumes, flavourings, cinnamic and mandelic acids, and it is also used as a solvent. Some more recent developments in the use of benzaldehyde are for the health and agriculture industries. Due to these basic reasons there exist a vast field of study of substituted benzaldehydes. In the present study a comparative analysis is done between 3-hydroxy-4-methoxy-benzaldehyde and 4-hydroxy-3-methoxy-benzaldehyde. The spectral studies were performed for FTIR, IR (KBr and Nuzol) and Raman. Quantum mechanical calculations of geometries, energies, vibrational wave numbers and thermodynamic constants have been performed with Gaussian 09W program package using the Becke-3Lee-Yang-Parr (B3LYP) functional supplemented with the standard 6-31G (DP). The optimised geometrical parameters obtained by computational method used shows good agreement with the experimental data. The thermodynamic properties as heat capacity, entropy, enthalpy and Gibb's free energy of the titled compounds at different temperatures were also calculated along with dipole moment, polarisability and hyperpolarisability.

Keywords : 3-hydroxy-4-methoxy-benzaldehyde , 4-hydroxy-3-methoxy-benzaldehyde, vibrational spectral , NLO, Gaussian 09W, DFT/ B3LYP ,thermodynamic parameters, FTIR, dipole moment, polarisability, hyperpolarisability.

I. INTRODUCTION

Benzaldehydes and its derivatives are one of the the simplest in aromatic aldehydes and is known as artificial essential oil of almond it has many other uses such as in manufacturing of dyes, perfumes, flavorings, cinnamic and mandelic acids, and it is also used as a solvent[1]. It is synthesized in laboratories from toluene being chlorinated to benzyl chloride or by direct oxidation of toluene with manganese dioxide. Some more recent developments in the use of benzaldehyde are for the health and agriculture industries. Benzaldehyde is being used as a pesticide and also as an anticancer agent and have shown anti tumour activity in mice.[1,2] It is used as a bee repellent in the harvesting of honey. These uses are still in development but would be very helpful in solving some of these problems of today. The benzaldehyde and its derivatives have received attention because of their chemical and biological importance. The benzaldehyde and substituted benzaldehydes have been subjected to various spectroscopic studies [3-7]. In this light a comparative study is carries out on different aspects of 3-hydroxy-4-methoxy-benzaldehyde (abbreviated and further mentioned as 3,4HMB) and 4-hydroxy-3-methoxy-

357

benzaldehyde (abbreviated and further mentioned as 4,3HMB).

II. EXPERIMENTAL

Spec-pure grade sample of 3,4HMB and 4,3HMB was obtained from M/S Aldrich Chemie, West Germany. The Purity of sample was confirmed by elemental analysis and melting point determination. The laser Raman spectra of both the molecules were recorded on Spex Rama Lab spectrophotometer using 52 MW Argon-Krypton laser beam of wavelength 488 nm. The infrared spectra of these two compounds were recorded on Perkin Elmer spectrophotometer model -52 in the region 400-4000 cm-1 using KBr and nuzol technique.

III. COMPUTATIONAL

All the calculations were carried out for BMB with Gaussian 03W program package [8]using the Becke-3Lee-Yang-Parr (B3LYP) functional supplemented with the standard 6-31G(DP) basis set further referred as DFT calculations. All the parameters were allowed to relax and all the calculations converged to an optimized geometry which corresponds to a true energy minimum, as revealed by the absence of imaginary values in the wave number calculations.

IV. RESULTS AND DISCUSSION A. MOLECULAR STRUCTURE

The molecular structures of the mentioned compounds 3,4HMB and 4,3HMB are shown in

TABLE 1 Calculated Optimized Geometrical Parameters of 3,4HMB, at B3LYP/6-31G(d,p): bond length (Å), bond angle(°), dihedral angles(°)

S.	Atoms	Bon	Angle	Bond	Dihedral	Dihed
Ν	of	d	between	angle	angle	ral
о	molec	leng	atoms (°)	(°)	between	angle
	ule	th			atoms (°)	(°)
		(Å)				

Figure 1 and 2 respectively. The optimized bond lengths, bond angles and dihedral angles of the compounds are calculated by B3LYP method using B3LYP 6-311++G (d) and 6-311++G (D,P) basis sets are listed in Table 1 and 2 respectively and are in accordance with atom numbering scheme as shown in Fig. 1 and 2. Since the exact crystal structures of the reported compounds are not available, the optimized structure can only be compared with other similar system for which the crystal structures have been solved. [9]

Figure 1. Molecular structure of 3,4HMB

Figure 2. Molecular structure of 4,3HMB

-						
1.	R(1,2)	1.39	A(2,1,6)	119.99	D(6,1,2,3)	0.0323
		52		85		
2.	R(1,6)	1.39	A(2,1,10	119.99	D(6,1,2,7)	179.95
		48)	72		32
3.	R(1,10	1.54	A(6,1,10	120.00	D(10,1,2,3	-
))	43)	179.97
						29
4						
4.	R(2,3)	1.39	A(1,2,3)	120.00	D(10,1,2,7	-0.052
4.	R(2,3)	1.39 47	A(1,2,3)	120.00 86	D(10,1,2,7)	-0.052
4. 5.	R(2,3) R(2,7)	1.39 47 0.00	A(1,2,3) A(1,2,7)	120.00 86 119.98	D(10,1,2,7) D(2,1,6,5)	-0.052 0.0149
4. 5.	R(2,3) R(2,7)	1.39 47 0.00 97	A(1,2,3) A(1,2,7)	120.00 86 119.98 08	D(10,1,2,7) D(2,1,6,5)	-0.052 0.0149

		54		06		92
7.	R(3,13	1.43	A(2,3,4)	119.99	D(10,1,6,5	-
)			42)	179.97
	,				,	98
8.	R(4,5)	1.39	A(2,3,13	120.01	D(10,1,6,9	-
		48)	28)	0.0056
9.	R(4,15	1.43	A(4,3,13	119.99	D(2,1,10,1	-
))	3	1)	89.960
						6
1	R(5,6)	1.39	A(3,4,5)	119.99	D(2,1,10,1	90.039
0.		51		4	2)	4
1	R(5,8)	1.09	A(3,4,15	119.98	D(6,1,10,1	90.034
1.		98)	11	1)	1
1	R(6,9)	1.09	A(5,4,15	120.02	D(6,1,10,1	-
2.		96)	49	2)	89.965
						9
1	R(10,1	1.07	A(4,5,6)	120.00	D(1,2,3,4)	-
3.	1)			47		0.0568
1	R(10,1	1.25	A(4,5,8)	120.01	D(1,2,3,13	179.96
4.	2)	84		13)	19
1	R(13,1	0.96	A(6,5,8)	119.98	D(7,2,3,4)	-
5.	4)			4		179.97
						77
1	R(15,1	1.43	A(1,6,5)	120.00	D(7,2,3,13	0.041
6.	6))	
1	R(16,1	1.07	A(1,6,9)	120.00	D(2,3,4,5)	0.0341
7.	7)			8		
1	R(16,1	1.07	A(5,6,9)	119.99	D(2,3,4,15	-
8.	8)			2)	179.99
						64
1	R(16,1	1.07	A(1,10,1	119.88	D(13,3,4,5	-
9.	9)		1)	65)	179.98
						46
2			A(1,10,1	120.22	D(13,3,4,1	-
0.			2)	69	5)	0.0151
2			A(11,10,	119.88	D(2,3,13,1	115.34
1.			12)	65	4)	3
2			A(3,13,1	109.5	D(4,3,13,1	-
2.			4)		4)	64.638
L						5
2			A(4,15,1	109.5	D(3,4,5,6)	0.0131
3.			6)			
2			A(15,16,	109.47	D(3,4,5,8)	-
4.			17)	12		179.99
<u> </u>						95
2			A(15,16,	109.47	D(15,4,5,6	-
5.			18)	12)	179.95
						63
2			A(15,16,	109.47	D(15,4,5,8	0.0311
6.			19)	12)	

2 A(17,16, 109.47 D(3,4,15,1) 151.28 7. 18) 13 6) 96 2 A(17,16, 109.47 D(5,4,15,1) - 8. 19) 12 6) 28.740 9 12 6) 28.740 9 2 A(18,16, 109.47 D(4,5,6,1) - 9. A(18,16, 109.47 D(4,5,6,1) - 9. 19) 12 0.0376 0.0376 3 A A 109.47 D(4,5,6,9) 179.98 0. I I I 0.0376 81 3 I I I I 0.0376 3 I I I I I I 1 I I I I I I 3 I I I I I I 3 I I I I I						
7. 18 13 6) 96 2 A(17,16, 109.47 D(5,4,15,1) - 8. 19) 12 6) 28.740 9 12 6) 9 2 A(18,16, 109.47 D(4,5,6,1) - 9. A(18,16, 109.47 D(4,5,6,1) - 9. 19) 12 0.0376 0.0376 3 A A A D(4,5,6,9) 179.98 0. A A B B B 3 A A A B B 3 A A A A B B 3 A A A A A B A 3 A A A B B B A 3 A A A A A A A 4. A A A A A A A A 3 A A A<	2		A(17,16,	109.47	D(3,4,15,1	151.28
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.		18)	13	6)	96
8. 19) 12 6) 28.740 9 $-$ 9 2 $A(18,16, 109.47)$ $D(4,5,6,1)$ $-$ 9. 19) 12 0.0376 3 $ 19$ 12 0.0376 3 $ 0.0376$ 81 3 $ 81$ 3 $ 0.0376$ 3 $ 0.0376$ 3 $ 0.0376$ 3 $ 0.0376$ 3 $ 0.0376$ 3 $ 0.0376$ 3 $ 0.0376$ 3 $ 0.0376$ 3 $ 0.0376$ 3 $ 0.0376$ 4. $ 0.007$ 3 $ 170$ $-$ 3 $ 18$ 166.96	2		A(17,16,	109.47	D(5,4,15,1	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.		19)	12	6)	28.740
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						9
9. 19) 12 0.0376 3 $D(4,5,6,9)$ 179.98 0. $D(4,5,6,9)$ 81 3 $D(8,5,6,1)$ - 1. $D(8,5,6,1)$ - 3 $D(8,5,6,9)$ 0.0376 3 $D(8,5,6,9)$ 0.007 2. $D(8,5,6,9)$ 0.007 3 $D(4,15,16, 73.033)$ 17) 3 $D(4,15,16, 73.033)$ 170 3 $D(4,15,16, 74.033)$ 166.96 4. $D(4,15,16, 74.033)$ 166.96 7 $D(4,15,16, 74.033)$ 166.96 9	2		A(18,16,	109.47	D(4,5,6,1)	-
3 D(4,5,6,9) 179.98 0. D(4,5,6,9) 81 3 D(8,5,6,1) - 1. D(8,5,6,9) 0.0376 3 D(8,5,6,9) 0.007 2. D(4,15,16, 73.033 3 D(4,15,16, 73.033 3. D(4,15,16, - 4. D(4,15,16, - 7 D(4,15,16, - 3 D(4,15,16, - 3 D(4,15,16, - 4. D(4,15,16, - 18) 166.96 - 7 D(4,15,16, -	9.		19)	12		0.0376
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3				D(4,5,6,9)	179.98
3	0.					81
1.	3				D(8,5,6,1)	-
3 D(8,5,6,9) .0007 2. D(4,15,16, 73.033 3 D(4,15,16, 73.033 3. D(4,15,16, - 4. D(4,15,16, - 18) 166.96 - 7 D(4,15,16, - 3 D(4,15,16, - 4. D(4,15,16, - 18) 166.96 - 7 D(4,15,16, -	1.					0.0376
2. 3 D(4,15,16, 173.033 3. 3 D(4,15,16, 170.033 4. D(4,15,16, 170.033 3 D(4,15,16, 170.033 3 D(4,15,16, 170.033 3 D(4,15,16, 170.033 3	3				D(8,5,6,9)	.0007
3 D(4,15,16, 73.033 3. 17) 17) 3 D(4,15,16, - 4. 18) 166.96 7 7 7 3 D(4,15,16, - 4. D(4,15,16, - 18) 166.96 7 3 D(4,15,16, - 0 D(4,15,16, -	2.					
3. 17) 3. D(4,15,16, - 4. 18) 166.96 7 7 3. D(4,15,16, - 4. D(4,15,16, - 10 D(4,15,16, -	3				D(4,15,16,	73.033
3 D(4,15,16, - 4. 18) 166.96 7 7 3 D(4,15,16, - 10 10	3.				17)	
4. 18) 166.96 7 3 D(4,15,16, -	3				D(4,15,16,	-
3 D(4,15,16, -	4.				18)	166.96
3 D(4,15,16, -						7
	3				D(4,15,16,	-
5. [19] 46.967	5.				19)	46.967

TABLE 2

CALCULATED OPTIMIZED GEOMETRICAL PARAMETERS OF 4,3HMB, AT B3LYP/6-31G(D,P): BOND LENGTH (Å), BOND ANGLE(°), DIHEDRAL ANGLES(°)

S.	Atom	Bon	Angle	Bond	Dihedra	Dihe
Ν	s of	d	betwee	angle	l angle	dral
ο	mole	len	n	(°)	betwee	angle
	cule	gth	atoms		n atoms	(°)
		(Å)	(°)		(°)	
1.	R(1,2	1.3	A(2,1,6	119.9	D(6,1,2,	0.032
)	958)	985	3)	3
2.	R(1,6	1.3	A(2,1,1	119.9	D(6,1,2,	179.9
)	948	0)	972	7)	532
3.	R(1,1	1.5	A(6,1,1	120.0	D(10,1,	-
	0)	4	0)	043	2,3)	179.9
						729
4.	R(2,3	1.3	A(1,2,3	120.0	D(10,1,	-
)	947)	086	2,7)	0.052
5.	R(2,7	1.0	A(1,2,7	119.9	D(2,1,6,	0.014
)	997)	808	5)	9
6.	R(3,4	1.3	A(3,2,7	120.0	D(2,1,6,	179.9

)	954)	106	9)	892
7.	R(3,1	1.4	A(2,3,4	119.9	D(10,1,	-
	5)	3)	942	6,5)	179.9
						798
8.	R(4,5	1.3	A(2,3,1	120.0	D(10,1,	-
)	948	5)	128	6,9)	0.005
					-	6
9.	R(4,1	1.4	A(4,3,1	119.9	D(2,1,1	-
	3)	3	5)	93	0,11)	89.96
						06
1	R(5,6	1.3	A(3,4,5	119.9	D(2,1,1	90.03
0.)	951)	94	0,12)	94
1	R(5,8	1.0	A(3,4,1	119.9	D(6,1,1	90.03
1.)	998	3)	811	0,11)	41
1	R(6,9	1.0	A(5,4,1	120.0	D(6,1,1	-
2.)	996	3)	249	0,12)	89.96
						54
1	R(10,	1.0	A(4,5,6	120.0	D(1,2,3,	-
3.	11)	7)	047	4)	0.056
						8
1	R(10,	1.2	A(4,5,8	120.0	D(1,2,3,	179.9
4.	12)	584)	113	15)	619
1	R(13,	0.9	A(6,5,8	119.9	D(7,2,3,	-
5.	14)	6)	84	4)	179.9
						777
1	R(15,	1.4	A(1,6,5	120.0	D(7,2,3,	0.041
6.	16)	3)	0	15)	
1	R(16,	1.0	A(1,6,9	120.0	D(2,3,4,	0.034
7.	17)	7)	08	5)	1
1	R(16,	1.0	A(5,6,9	119.9	D(2,3,4,	-
8.	18)	7)	92	13)	179.9
						964
1	R(16,	1.0	A(1,10,	119.8	D(15,3,	-
9.	19)	7	11)	865	4,5)	179.9
						846
2			A(1,10,	120.2	D(15,3,	-
0.			12)	269	4,13)	0.015
						1
2			A(11,1	119.8	D(2,3,1	57.69
1.			0,12)	865	5,16)	45
2			A(4,13,	109.5	D(4,3,1	-

2.		14)		5,16)	122.2
					868
2		A(3,15,	109.5	D(3,4,5,	0.013
3.		16)		6)	1
2		A(15,1	109.4	D(3,4,5,	-
4.		6,17)	712	8)	179.9
					95
2		A(15,1	109.4	D(13,4,	-
5.		6,18)	712	5,6)	179.9
					563
2		A(15,1	109.4	D(13,4,	0.031
6.		6,19)	712	5,8)	1
2		A(17,1	109.4	D(3,4,1	90.11
7.		6,18)	713	3,14)	78
2		A(17,1	109.4	D(5,4,1	90.11
8.		6,19)	712	3,14)	78
2		A(18,1	109.4	D(4,5,6,	-
9.		6,19)	712	1)	0.037
					6
3				D(4,5,6,	179.9
0.				9)	881
3				D(8 ,5,6,	179.9
1.				1)	75
3				D(8 ,5,6,	.0007
2.				9)	
3				D(3,15,	158.2
3.				16,17)	443
3				D(3,15,	-
4.				16,18)	81.75
					59
3				D(3,15,	38.24
5.				16,19)	43

The calculated optimised geometrical parameters i.e bond length, bond angle and dihedral angles of both the reported compounds are similar to a greater extent with slight variations thus we can conclude that mere exchanging the positions of the functional groups does not affect the geometries of the compounds very significantly.

B. VIBRATIONAL SPECTRA

A detailed study of vibrational spectra has been carried out of the reported compounds and the vibrational frequencies have been calculated using DFT-B3LYP level with 6-31++G(d,p), there is a good agreement between the observed frequencies and those calculated by the DFT comparative chart is shown in Table 3 in which experimental values of IR (KBr and nuzol), FTIR and laser Raman are displayed and simultaneously compared with the calculated values (scaled and unscaled)

TABLE 3. EXPERIMENTAL AND CALCULATED VALUES OF FREQUENCIES FOR 3,4HMB

S.N		Exp	perime	ental	Calcula	ted Freq	uencies	
о.	Fre	equen	cies					
	F	Ra	IR	IR(unsc	scale	IR	Raman
	Т	ma	(k	nuz	aled	d	intensit	activity
	Ι	n	br)	ol)			ies	
	R							
1		50						
2		72			74.62	70.14	2.9333	1.4341
3					119.6 112.6		6.8262	0.6420
					3	3		
4					166.2	156.2	7.6612	0.5780
					5	5		
5					174.3	163.9	0.4465	3.0202
					8	1		
6					224.5	211.1	0.0189	0.4937
					9	1		
7					229.6	215.6	0.7669	0.0747
					8	8		
8					339.7	319.3	5.8455	6.0849
					0	1		
9		36			378.1	355.4	2.4019	0.9649
		2			7	7		
10					386.4	363.3	3.8944	6.881
					9	0		
11		43						
		1						
12		48			479.0	450.2	22.088	0.0844
		4			4	9	6	
13		51	50		508.3	477.8	12.299	3.7435
		5	4		9	8	7	
14					554.9	521.6	121.71	4.1262
					3	3	48	

15		60	58		597.0	561.1	6 9926	5 7959
15		3	9		2	9	0.7720	5.1757
10	6	5) ()	()(2 (22.2.2	504.4	6 0005	0.05(0
16	6	64	63	636	632.3	594.4	6.8335	0.3562
	3	9	6		5	0		
	4							
	2							
17			68	678	647.6	608.8	31.467	0.7632
			2		9	2	0	
18		74	-	730	-	-	0	
10		/ -	1	750				
10		0	1	750	750.0	710.0	11.007	15 500 (
19		77	75	759	758.3	712.8	11.026	15.5836
		4	9		3	3	8	
20					789.7	742.3	0.0984	0.9191
					0	1		
21		80	79	792	806.7	758.3	53.839	11.4865
		9	3		9	9	4	
22	8		83	831				
	3		1	001				
	7		1					
	<i>'</i>							
	•							
	9							
23		88	86	867	874	821.5	56.306	2.5884
		1	7			6	6	
0.4					00.6	070.0	10 7 45	1.00/0
24					936	879.8	19.745	1.2968
						4	5	
25		97	96	966	968.3	910.2	19.912	3.9391
		6	6		5	4	5	
26	1		10	102	1016	955.0	1.6738	0.5428
	0		23	3		4		
	2							
	1							
	-							
	ว							
27	2				1022	071.4	74.026	2.0715
21					1033.	9/1.4	74.930	5.2715
					5	9	3	
28					1074	1009.	1.2251	8.4373
						56		
29	1	11	11	112	1140	1071.	132.55	15.5920
	1	29.	21	1		6	18	
	2	0						
	3							
	Ι.							
	1							
30	-				1165	1005	0.0004	7 2082
30					1105.	1093.	0.0004	7.2005
	<u> </u>				02	0ð	0.000	0.00=0
31		11	11	116	1185.	1114.	0.0834	2.0079
		92	69	8	91	75		
32					1199.	1127.	28.098	4.2784
1	1	1	1	1	1	1	1	

					27	31	2				50	39					T	
22	 	10	10	101	10.42	11/0	70 (51	0.001	50	 		00						
33		12	12	121	1243	1168.	79.674	2.6684	52			23						
2.4		31	19	/		42	3		50		05	46						
34		12	12	124					53		25							
		50	47	6	1070	1101	115.05	2.000.6			00					_		
35	1				1270.	1194.	115.07	3.9886	54	2		28	285					
	2				95	69	06			8		47	5					
	7									4								
	5									4								
	•																	
	8									1								
36									55		29	28		2915.	2740.	15	0.92	135.457
37		12	13	130	1298	1220.	328.42	30.8505			00	67		82	87	06		3
		92	02	2		12	14		56	2		29	292					
38		13	13	134	1345	1264.	19.903	4.5991		9		37	6					
		58	44	3		3	9			4								
39		14		137	1378.	1295.	77.827	26.5776		0								
		07		7	63	91	5			•								
40			14	144	1447.	1360.	11.994	14.1129		9								
			46	6	59	73	1		57			29						
41		14	14	146								76						
		57	49	0					58		30	30		3040.	2858.	36	.459	116.454
42					1501.	1411.	31.180	5.0581			31	03		44	01	1		8
					46	37	6		59					3099.	2913.	29	512	53.6200
43	1	15	15	151	1517.	1426.	9.5105	18.0896						72	73	8		
	5	27	13	1	41	36			60					3163.	2973.	13	.585	110.996
	2													66	84	5		2
	0								61	3		32	321	3219.	3026.	1.6	428	41.0935
										2		21	4	23	07			
	2									4								
44					1555.	1461.	10.265	35.0992		6								
					01	70	5	0010772										
45		15	15	157	1571.	1477	12,407	17,9563		4								
15		92	79	8	8	49	4	17.5500	62					3233.	3039.	6.4	016	101.907
46		16	16	160	1608	1511	66 303	175 906						28	28			7
10		21	08	7	39	88	8	4	63		35	35	355	3448.	3241.	71	.012	72.1404
47	1	16	16	, 167	1649	1550	66 303	175 956			00	50	4	00	12	2		
17	6	85	73	3	74	75	8	3										
	7	05	10	0	<i>,</i> 1	15	Ū	0	ТА	BLF	C4 E	XPER	IMENT	'AL ANI	CALC	TULAT	'ED VA	LUES
	8														ν	цило		
	0										C		QUEN	CIES FC	JK 4,5		•	
									S.No.		_	Expe	rimenta	al	Calcu	ated F	requen	cies
48	1		17	175	1715	1612	125 51	66 7046			Freq	uencie	S					
10			59	3	70	75	59	00.7010			FT 	Ra	IR(IR(n	uns	scal	IR	Ra
49			10	101							IR	ma	kbr	uzol	cale	ed	inte	man
47			17	2								n))	d		nsiti	acti
50	<u> </u>	18	12	-													es	vity
50		10 25								l.		40						
51	-	20	20							2.		54						
1		20	20							3.		84			76.0	71.	10.0	1.93

					9	52	920	91
4.		11			114.	107	0.08	0.64
		0			23	.37	99	81
5.					149.	140	9.19	1.42
					03	.08	20	51
6.		19			188.	176	0.03	2.03
		5			00	.72	40	80
7.		22			227.	214	5.25	0.76
		4			74	.07	75	34
8.					236.	221	4.17	0.46
					07	.90	10	84
9.					258.	242	0.12	2.04
					46	.95	95	76
10.		37			331.	311	3.59	2.21
		3			12	.25	35	86
11.		44			422.	397	0.39	8.63
		2			81	.44	84	41
12.					495.	465	11.1	0.37
					66	.92	824	43
13.		52	517					
		9						
14.			536		543.	510	6.33	3.06
					38	.77	11	17
15.					555.	522	4.44	4.04
					62	.27	24	49
16.					600.	564	136.	3.72
					62	.58	9021	60
17.					628.	590	11.6	0.83
					46	.75	012	79
18.			642	641	638.	599	43.6	6.59
					24	.94	194	96
19.	72	73	720	720				
	5.9	2						
20.			738	737	745.	700	41.0	11.8
					71	.96	098	377
21.			764	763				
22.			782	782	797.	749	0.15	0.66
					10	.27	73	33
23.					831.	781	1.07	12.3
<u> </u>		67	627	026	15	.28	24	040
24.		85	839	839	867.	815	46.9	1.42
		2		0.5	52	.46	106	63
25.			896	896				
26.	96		949	948	961.	904	6.13	2.03
	0.1				87	.15	50	29
27.					967.	909	18.7	3.63
					87	.79	571	03
28.					100	941	8.89	1.01
					1.73	.62	24	63

29.					104	983	60.1	7.18
					6.53	.73	196	48
30.	10	11	107	1071	107	100	1.65	6.87
	82.	06	1		2.23	7.8	84	41
	3					9		
31.					115	108	51.3	1.15
					6.18	6.8	916	58
						0		
32.			116	1165	116	109	0.00	6.56
			5		6.08	6.1	07	48
			5		0.00	1	01	10
33			118	1183	117	110	69.7	2 14
55.			2	1105	3 21	20	627	2.14 QQ
			3		5.21	2.0	027	00
24		11			110	110	E1 9	7.06
54.		11			7.01	11Z	51.5	7.00
		99			7.21	5.3	097	60
			101	1010		/		
35.			121 9	1218				
36.	12	12	126	1258	124	116	220.	20.3
	65.	32	1		3.00	8.4	9489	670
	6					2		
37.					127	119	58.0	6.89
					3.71	7.2	048	77
						8		
38.					129	121	216.	10.2
					6.95	9.1	2342	144
						3	-	
39.		13	132	1326	134	125	6.52	5.67
		38	7		0.01	96	74	30
					0101	0		
40		13	139	1378				
10.		86	0	1070				
41			143		147	134	6.89	5 71
			5		7 77	2.0	10	03
			,		1.12	2.0 5	17	00
12			145	1456	145	136	60.1	15.3
1 2.			6	0.41	2 00	6.4	616	1.J.J 600
			0		5.90	0.0 6	040	099
40	14	14	147		140	U 120	110	16.0
43.	14	14	14/		148	139	112.	10.0 701
	04. 2	/1	1		4.23	5.1 7	4072	/81
	2	14	151		151	/	4.01	0.25
44.		14	151		151	141	4.ð1	9.30
		81	U		0.26	9.6	32	39
			4		a =	4	46-	
45.			154		154	145	135.	2.79
			4		4.73	2.0	8861	37
						4		
46.			156		155	145	10.1	31.6
			2		2.26	9.1	285	183

						2		
47.			159	1589	157	147	8.85	12.7
			0		1.70	7.3	78	912
						9		
48.					163	153	41.0	41.7
					2.74	4.7	711	298
						7		
49.	16	16	164	1640	163	154	107.	126.
	62.	55	0		8.31	0.0	4711	553
	8					1		3
50.			171		170	160	125.	71.9
			9		5.89	3.5	0929	202
						3		
51.			173	1736				
			0	1704				
52.			1/8	1/84				
52			4 195	1916				
55.			7	1040				
54			, 191	1910				
51.			1	1710				
55.			201					
			8					
56.		22						
		00						
57.			234					
			6					
58.		27		2726				
		00						
59.			284	2857				
			0					
60.			288		291	274	150.	144.
			5		8.31	3.2	4067	487
						1		2
61.				2927				
62.			294					
			1					
63.			297					
			4		20.4	205	20. 1	101
64.			301 6		304	285	29.4	101. 712
			0		0.00	0.2 2	020	713
65			307		300	- 201	28 5	41 0
05.			0		9.70	3.7	136	535
					2.70	1	150	202
66					316	297	14.2	102
					3.26	3.4	012	597
					-	6		7
67.					319	300	5.03	65.2
1	1	1	1	1	1	1	1	

					4.45	2.7	44	424
						8		
68.					322	303	4.62	23.6
					8.82	5.0	81	939
						9		
69.					327	308	3.18	140.
					8.41	1.7	93	369
						0		8
70.	34		341	3435	342	321	104.	115.
	29.		3		3.02	7.6	1555	801
	7					3		3
71.		40						
		00						

B.I C – C vibrations

The bands in the range 1400-1650 cm-1 are generally assigned to C-C stretching mode .[10] The bands of variable intensity are generally observed at 1625-1590 cm-1, 1590- 1575cm-1, 1540-1470cm-1, 1465- 1430cm-1 and 1380-1280cm-1 from the frequency ranges given by Varsanyi.[11] The bands at 1579 (KBr) /1578(nuzol)/1592 cm-1 Raman for 3,4-HMB and 1590(KBr)/1589(nuzol)/1481 cm-1 Raman for 4,3-HMB have been clearly identified as the components of e1u(1595 cm-1)mode of benzene. The components of e2g(1485 cm-1) mode of benzene have been assigned at 1460 cm-1 for 3,4-HMB and 1464 cm-1 for 4,3-HMB. These values are in fair agreement with the calculated values.

B.II C-H VIBRATIONS

In the high frequency region the bonds observed at 2926cm-1 (nujol) for 3,4-HMB and 2927 cm-1 (nujol) for 4,3-HMB with the counterpart of Raman band at 3031 cm-1 and 2700 cm-1 respectively and 3003cm-1 (KBr) and 2845 cm-1 (KBr) have been identified as ring stretching modes and well lie in the region predicted by Bellamy[12] for this mode. The C-H in-plane bending frequency and out-of-plane bending modes lie in the region 1225-950 cm-1 and 950-650 cm-1 respectivelly[12]. In view of the above, the bands observed at 1023 cm-1 (nujol)/ 1023 cm-1 (KBr) for 3,4-HMB and1071 cm-1(nujol)/

1071 cm-1 (KBr) for 4,3-HMB and very strong Raman band observed at 1129 cm-1 for3,4-HMB and 1106 cm-1 for4,3-HMB respectively have been assigned as C-H (.p.b. mode while the bands observed at 831 cm-1 (KBr)/ 831 cm-1 (nujol) for 3,4-HMB and 839 cm-1 (KBr)/839 cm-1 (nuzol) for 4,3-HMB respectively and strong band at 809 cm-1 for 3,4-HMB and 852 cm-1 for 4,3-HMB respectively in Raman have been identified as C-H o.p.b. mode.

B.III Aldehyde group vibrations

The C-H stretching vibrations of the aldehyde group usually appear in the region 2871–2806 cm-1 [13]. The bands at 2900 cm-1 for Raman and 2937 cm-1(KBr)/ 2926 cm-1(nuzol) for IR are assigned to aldehyde group vibrations and shows close proximity with the calculated value which is 2915.82 cm-1 for3,4HMB whereas the bands at 2700 cm-1 at Raman and 2840 cm-1(KBr)/ 2857 cm-1 (nuzol) for IR are assigned for this group vibration which corresponds to 2918.31 cm-1 for the calculated value for 4,3HMB.

C. THERMODYNAMIC PROPERTIES

Theoretical geometrical parameters represent a good approximation and they are the basis for calculating vibrational frequencies and thermodynamic parameters. The frequency calculations compute the zero point energies, thermal correction to internal energy and entropy as well as the heat capacity for a molecular system. These functions describe the thermodynamic stability of the system at the given conditions of pressure and temperature. The first set and table 4 represents the thermal functions for3,4HMB and second set and table 5 for 4,3HMB respectively.

Zero-point correction = 0.147490 (Hartree/Particle) Thermal correction to Energy = 0.157263 Thermal correction to Enthalpy = 0.158207 Thermal correction to Gibbs Free Energy = 0.112288 Sum of electronic and zero-point Energies = -532.220615 Sum of electronic and thermal Energies = -532.210842 Sum of electronic and thermal Enthalpies = -532.209898 Sum of electronic and thermal Free Energies = -532.255817

TABLE 4

	Е	CV	S
	(Thermal)	Cal/Mol-	Cal/Mol-
	KCal/Mol	Kelvin	Kelvin
Total	98.684	36.723	96.644
Electronic	0.000	0.000	0.000
Translational	0.889	2.981	40.967
Rotational	0.889	2.981	30.327
Vibrational	96.907	30.762	25.350
Vibration 1	0.599	1.966	4.028
Vibration 2	0.609	1.933	3.106
Vibration 3	0.624	1.884	2.477
Vibration 4	0.627	1.874	2.388
Vibration 5	0.649	1.804	1.922
Vibration 6	0.652	1.796	1.881
Vibration 7	0.686	1.693	1.477
Vibration 8	0.720	1.596	1.214
Vibration 9	0.748	1.517	1.046
Vibration 10	0.755	1.499	1.014
Vibration 11	0.835	1.297	0.713
Vibration 12	0.864	1.231	0.637
Vibration 13	0.910	1.129	0.534
Vibration 14	0.955	1.038	0.455

Zero-point correction = 0.147724 (Hartree/Particle) Thermal correction to Energy = 0.157447 Thermal correction to Enthalpy = 0.158391 Thermal correction to Gibbs Free Energy = 0.112495 Sum of electronic and zero-point Energies = -532.223477

Sum of electronic and thermal Energies = -532.213754

Sum of electronic and thermal Enthalpies = -532.212810

Sum of electronic and thermal Free Energies = - 532.258706

	Е	CV	S
	(Thermal)	Cal/Mol-	Cal/Mol-
	KCal/Mol	Kelvin	Kelvin
Total	98.799	36.492	96.597
Electronic	0.000	0.000	0.000
Translational	0.889	2.981	40.967
Rotational	0.889	2.981	30.361
Vibrational	97.022	30.531	25.268
Vibration 1	0.599	1.965	3.989
Vibration 2	0.607	1.938	3.196
Vibration 3	0.618	1.904	2.684
Vibration 4	0.633	1.856	2.247
Vibration 5	0.651	1.799	1.897
Vibration 6	0.655	1.786	1.832
Vibration 7	0.667	1.748	1.672
Vibration 8	0.713	1.613	1.255
Vibration 9	0.768	1.464	0.952
Vibration 10	0.785	1.421	0.882
Vibration 11	0.851	1.260	0.669
Vibration 12	0.899	1.154	0.558
Vibration 13	0.911	1.127	0.533
Vibration 14	0.959	1.030	0.449

TABLE 5

D. ELECTRIC MOMENT

The dipole moment in a molecule is an important property that is mainly used to study the intermolecular interactions involving the nonbonded type dipole-dipole interactions, as we know that higher the dipole moment, stronger will be the intermolecular interactions. In the absence of experimental data, the values of polarizability and hyperpolarizability calculated at the same level of theory and the same basis set for the compounds 3,4BMB and 4,3HMB can provide a satisfactory comparison of these quantities.

The component of dipole moment μ , polarizability α and the first hyperpolarizability β can be calculated by using the following equations

$\mu = (\mu x^2 + \mu y^2 + \mu z^2)^{1/2}$
$\bar{\alpha} = 1/3(\alpha x x + \alpha y y + \alpha z z)$
$\Delta \alpha = 1/\sqrt{2} \{ [(\alpha xx - \alpha yy)2 + (\alpha yy - \alpha zz)2 + (\alpha zz - \alpha yz)2 \} \}$
$\alpha xx)2 + 6 \alpha 2 xz]$]1/2
First order polarizability β = [($\beta xxx + \beta xyy +$
βxzz)2+(βyyy + βxxy + βyzz)2+(βzzz + βxxz +
βyyz)2]1/2

So the table 6 represents the values of dipole moment, polarizability and hyperpolarizability for 3,4HMB and table 7 for 4,3HMB respectively.

TABLE 6

Dipole		Polarizability		Hyperpolarizability	
moment					
	5.0370		-		111.2712
		αxx	63.0787	βxxx	
μx					
	-		-		-14.3230
	1.2685	αуу	61.2540	βууу	
μу					
	-		-		-0.0015
	0.0008	αzz	65.6852	βzzz	
μz					
			-		9.2691
		αχγ	11.4386	βхуу	
			-0.0038		15.2291
		αxz		βxxy	
			0.0002		-0.0099
		αyz		βxxz	
					2.7672
				βxzz	
					1.0604
				βyzz	

		0.0018	Δ
	βyyz		Δ
		0.0038	ß
	βxyz		P Q

TADI D 7

Dipole		Polarizability		Hyperpolarizability		
moment						
μx	- 2.3742	αxx	- 67.0736	βxxx	-46.9792	
μу	- 0.7684	αуу	- 57.0400	βууу	-17.8053	
μz	0.0008	αzz	- 65.6841	βzzz	0.0013	
		αχγ	14.5315	βхуу	-14.1540	
		αxz	-0.0008	βxxy	9.3349	
		αyz	-0.0013	βxxz	0.0027	
				βxzz	-3.6143	
				βyzz	-6.8465	
				βyyz	0.0002	
				βxyz	0.0016	

Using the values of dipole moment, polarizability and hyperpolarizability from table 6 and 7 for reported compounds 3,4HMB and 4,3HMB respectively we get the values of μ , $\bar{\alpha}$, $\Delta \alpha$ and β as follows :-

For 3,4HMB

For 4,3HMB

µ= 5.1943

μ= 2.4954

- $\bar{\alpha} = 63.2659$
- $\bar{\alpha}=63.2659$

 $\Delta \alpha = 3.8573$ $\Delta \alpha = 9.4161$ $\beta = 133.3220$ $\beta = 66.5344$

V. CONCLUSION

In the present work we have calculated and compared the geometric parameters, the vibrational frequencies and NLO properties of 3-hydroxy-4methoxy-benzaldehyde and 4-hydroxy-3-methoxybenzaldehyde by using Becke-3Lee-Yang-Parr (B3LYP) functional supplemented with the standard 6-31G (DP) basis and compared these values with the experimentally recorded FTIR, IR (KBr and nuzol) and Raman spectra. In general, a good agreement between experimental and calculated normal modes of vibrations have been observed. We also calculated thermodynamic properties as heat capacity, entropy, enthalpy and Gibb's free energy of the titled compounds at different temperatures along with dipole moment, polarisability and hyperpolarisability.

VI. REFERENCES

- A. Nataraj, V. Balachandran, T. Karthick, J. Mol. Struct. 1006 (2011) 104–112.
- [2]. S. Takeuchi, M. Kochi, K. Sakaguchi, K. Nakagawa, T. Mizutani, Agric. Biol. Chem. 42 (1978) 1449.)
- [3]. A. Bayandori Moghaddam, F. Kobarfard, A.R. Fakhari, D. Nematollahi, S.S.H.Davarani, Electrochimica Acta 51 (2005) 739–744.
- [4]. S. Riahi, M.R. Ganjali, A. Bayandori Moghaddam, P. Norouzi, M. Niasari, J. Mol. Structure(THEOCHEM) 774 (2006) 107–111.
- [5]. S. Riahi, A. Bayandori Moghaddam, M.R. Ganjali, P. Norouzi, M. Latifi, J. Mol.Struct. (THEOCHEM) 807 (2007) 137–145.

- [6]. S. Riahi, M.R. Ganjali, A.B. Moghaddam, P. Norouzi, Spectrochimica Acta Part A 70 (2008) 94–98.
- [7]. S. Riahi, P. Norouzi, A. Bayandori Moghaddam, M.R. Ganjali, Karimipour, H.Sharghi, Chem. Phys. 337 (2007) 33–38.
- [8]. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
- [9]. Kennedy, Alan R et al.Section E, Structure reports online vol. 66,Pt 8 o2110. 24 Jul. 2010,
- [10]. D.N.Sathyanarayna, Vibrational Spectroscopy, Theory and applications, New Age International Publishers, New Delhi 2004
- [11]. G.Varsanyi, Vibrational spectra of Benzene Derivatives, Academic Press, New York,(1969)
- [12]. L.J.Bellamy, "Infrared Spectra of Complex Molecules" Chapman and Hall, London (1980).

[13]. J. Mohan, Organic Spectroscopy–Principles and Applications, second ed., Narosa Publishing House, New Delhi, 2011.